Title Tools for Creating Conditional Probability Tables

نویسنده

  • Russell Almond
چکیده

CPTtools-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 ACED.scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 areaProbs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 betaci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 buildFactorTab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 buildParentList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 buildRegressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 buildRegressionTables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 calcDDTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 calcDNTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 calcDPCTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 calcDSllike . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 calcDSTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 calcNoisyAndTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 calcNoisyOrTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 colorspread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 compareBars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Compensatory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 dataTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 effectiveThetas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 eThetaFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

User Interface Tools for Navigation in Conditional Probability Tables and Elicitation of Probabilities in Bayesian Networks

Elicitation of probabilities is one of the most laborious tasks in building decision-theoretic models, and one that has so far received only moderate attention in decision-theoretic sys­ tems. We propose a set of user interface tools for graphical probabilistic models, fo­ cusing on two aspects of probability elici­ tation: (1) navigation through conditional probability tables and (2) interacti...

متن کامل

Dynamic Bayesian Networks with Deterministic Latent Tables

The application of latent/hidden variable Dynamic Bayesian Networks is constrained by the complexity of marginalising over latent variables. For this reason either small latent dimensions or Gaussian latent conditional tables linearly dependent on past states are typically considered in order that inference is tractable. We suggest an alternative approach in which the latent variables are model...

متن کامل

An application of Measurement error evaluation using latent class analysis

‎Latent class analysis (LCA) is a method of evaluating non sampling errors‎, ‎especially measurement error in categorical data‎. ‎Biemer (2011) introduced four latent class modeling approaches‎: ‎probability model parameterization‎, ‎log linear model‎, ‎modified path model‎, ‎and graphical model using path diagrams‎. ‎These models are interchangeable‎. ‎Latent class probability models express l...

متن کامل

On tensor rank of conditional probability tables in Bayesian networks

A difficult task in modeling with Bayesian networks is the elicitation of numerical parameters of Bayesian networks. A large number of parameters is needed to specify a conditional probability table (CPT) that has a larger parent set. In this paper we show that, most CPTs from real applications of Bayesian networks can actually be very well approximated by tables that require substantially less...

متن کامل

An IRT-based Parameterization for Conditional Probability Tables

In educational assessment, as in many other areas of application for Bayesian networks, most variables are ordinal. Additionally conditional probability tables need to express monotonic relationships; e.g., increasing skill should mean increasing chance of a better performances on an assessment task. This paper describes a flexible parameterization for conditional probability tables based on it...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015